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Abstract: VALIDATE is a hybrid approach to predict the binding affinity of novel ligands for receptors of known
three-dimensional structure. This approach calculates physicochemical properties of the ligand and the receptor-
ligand complex to estimate the free energy of binding. The enthalpy of binding is calculated by molecular mechanics
while properties such as complementary hydrophobic surface area are used to estimate the entropy of binding through
heuristics. A diverse training set of 51 crystalline complexes was assembled, and their relevant physicochemical
properties were computed. These properties were analyzed by partial least squares (PLS) statistics, or neural network
analysis (SONNIC), to generate models for the general prediction of the affinity of ligands with receptors of known
three-dimensional structure. The ability of the model to predict the affinity of novel complexes not included in the
training set was demonstrated with three independent test sets: 14 complexes of known three-dimensional structure
including 3 DNA complexes, a class of compound not included in the training set, 13 HIV protease inhibitors fit to
HIV-1 protease, and 11 thermolysin inhibitors fit to thermolysin.

Introduction

Advances in molecular biology, X-ray crystallography, and
NMR spectroscopy are providing three-dimensional structures
of potential therapeutic targets at atomic resolution at an
increasing rate. Coupled with the vast increases in accessible
computing power, these advances have ushered in a new era of
rational drug design. Several structure-based drug design
packages now exist1-4 to assist in the design of novel ligands
to interact with known three-dimensional active sites. A
common strategy for structure-based drug design is to first
search the known binding sites for positions that interact with
different functional groups.5,6 The next step is to connect the
functional groups given their three-dimensional positions to form
molecules that are candidates for synthesis.7,8 The last step is
the prediction of the affinity for the receptor of the designed
ligands for synthetic prioritization.

One approach to predicting ligand affinity focuses on directly
calculating the thermodynamics of forming a ligand-receptor
complex. For a comprehensive review of the complexities
involved and the various approaches, see the review by Ajay
and Murcko9 and the references therein. Williams10-15 has used
a vancomycin-peptide complex as an experimental system in
which to evaluate the various contributions to binding affinity
and produced the following relationship:

∆G(trans+ rot) ) the free energy associated with translational and
rotational freedom of the ligand. This has an adverse effect on
binding of 50-70 kJ/mol (12-17 kcal/mol) at room temperature
for ligands of 100-300 Da assuming complete loss of trans-
lational and rotational freedom relative to the receptor.∆Grotors

) the free energy associated with the number of rotational
degrees of freedom frozen. This is 5-6 kJ/mol (1.2-1.6 kcal/
mol) per rotatable bond, assuming complete loss of rotational
freedom. ∆Hconform) the strain energy introduced by complex
formation (deformation in bond lengths, bond angles, torsional
angles, etc. from solution states).Σ∆Gi ) the sum of interaction
free energies between polar groups.∆GvdW ) the energy
derived from enhanced van der Waals interactions in the
complex. ∆GH ) the free energy attributed to the hydrophobic
effect (0.125 kJ/mol per Å2 of hydrocarbon surface removed
from the solvent by complex formation).
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Searle and Williams13 have examined the thermodynamics
of sublimation of organic compounds without internal rotors,
and shown that only 40-70% of theoretical entropy loss occurs
on crystallization. This provides an estimate of the entropy loss
to be expected on drug-ligand interaction. Pickett and Stern-
berg16 have analyzed the side chain conformational entropy
change on protein folding for each type of amino acid residue.
As several of the components in the binding energy estimate
are directly related to the degree of order of the system (entropy),
simulations in solvent may be necessary to quantitate the degree
by which the relative motions of the ligand and protein are
quenched and the restriction on rotational degrees of freedom
upon complexation. One might, therefore, consider thermody-
namically rigorous approaches in which a ligand of known
structure and affinity is mutated to the ligand of interest and
the difference in binding free energy is calculated.17-19 A good
example of the use of simulations to calculate the relative free
energy of binding is that of a transition state inhibitor to the
enzyme thermolysin.20 Such methods are appropriate when
limited structural variation is under consideration as they have
been shown accurate when the perturbation to the starting
ligands is small. Unfortunately, such thermodynamic cycle
perturbation approaches are computationally demanding and
currently inappropriate for de novo design due to the diversity
of the structures to be considered.
Quantitative structure-activity relationships (QSAR) repre-

sent another approach to affinity prediction. In these methods
the thermodynamics of binding are not explicitly represented,
but are embedded in physicochemical properties determined for
each ligand which are then correlated to activity. Traditional
QSAR methods have been developed for receptors whose 3D
structure are unknown to analyze the database of ligands whose
structures and binding affinities are known.21 These are often
based on the assumption that a correlation exists between the
enthalpy of binding and the free energy of binding as the
receptor is a constant and the congeneric series of ligands under
consideration do not differ significantly in size, flexibility, etc.
which would impact the entropy of binding. 3D QSAR
methods, such as comparative molecular field analysis
(CoMFA),22-26 often use a grid-based approach to derive an
active site model for the receptor in terms of energetic fields
such as electrostatics, sterics, and hydrophobicity.27 The
difficulty with such methods lies within the limitations on the
predictive models they generate and the requirements for their
appropriate use. First, a considerable training set of ligands of
diverse structure with known binding affinities must be present
for each receptor. New therapeutic targets generally lack such

a set of diverse ligands with measured affinities. Second, the
accuracy of prediction of ligands has been generally shown to
be dependent upon the similarity of the ligand with those in
the training set.28 There is little confidence in the prediction
of the binding affinity of a novel ligand which is truly unique
with respect to the training set due to the extrapolation required
from ligands present in the training set. In an extension to
receptors of known structure, 3D QSAR has been used to derive
robust predictive models for the binding affinity of inhibitors
of HIV protease,29-32 but one can argue that most of these
compounds are of similar nature, being derived by substrate
modification and retaining a peptidic backbone.
In an effort to overcome the limitations and approximations

of QSAR approaches, a new class of scoring function with
greater range of applicability has been developed. This type
of function uses the receptor’s 3D structure along with that of
the ligand to predict affinity.33-35 Such approaches, e.g., the
scoring function for LUDI,36 base their calculations upon an
estimate of the binding free energy by approximating the
contributions of hydrogen bonding, of entropy due to rotatable
bonds in the ligand which are frozen upon binding, and of
desolvation based on some sort of hydrophobic complementarity
information. Böhm36 analyzed 45 protein-ligand complexes
(affinity range-9 to -76 kJ/mol) and found the following
equation by multiple regression analysis:

where ∆Go is related to the reduction in rotational and
translational entropy,∆Ghb is the free energy associated with
hydrogen bond formation,∆Gionic is the binding energy from
ionic interactions,∆Glipo is the lipophilic interaction contribu-
tion, and∆Grot is the energy loss by freezing of internal degrees
of freedom in the ligand.
Similarly, Krystek et al.37 analyzed 19 protein-ligand

complexes in an update of the Novotny approach to binding
entropy38 and produced the following relationship:
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(36) Böhm, H.-J.J. Comput.-Aided Mol. Des.1994, 8, 243-256.
(37) Krystek, S.; Stouch, T.; Novotny, J.J. Mol. Biol.1993, 234, 661-

679.
(38) Novotny, J.; Bruccoleri, R. E.; Saul, F. A.Biochemistry1989, 28,

4735-4749.

∆Gbinding (kJ/mol)) 5.4∆Go - 4.7∆Ghb - 8.3∆Gionic -
0.17∆Glipo + 1.4∆Grot

r2 ) 0.76,S) 7.9,q2 ) 0.696,s(press)) 9.3 kJ/mol
(2.2 kcal/mol)

∆Gbinding (kcal/mol)) 11- 0.025∆GCSA - ∆GEL + 0.6Tsc

r2 ) 0.69,s) 4.0

3960 J. Am. Chem. Soc., Vol. 118, No. 16, 1996 Head et al.



area,∆GEL ) the electrostatic binding energy, andTsc ) the
change in torsional and rotational entropy.
Even these methods of approximating affinities have their

limitations. First, they require the 3D structure of the receptor
to make their predictions, although this is becoming less of an
issue due to the advances mentioned earlier. Second, most of
these methods employ calculations of limited accuracy due to
computational constraints on estimation of the entropic contribu-
tions. We report a new hybrid methodology which focuses on
the accuracy of the calculations through maximal use of 3D
information of the ligand-receptor complex by combining a
heuristic approach with parameters derived from molecular
mechanics. (While this paper was in preparation, a method
which uses parameters derived from molecular mechanics
calculations on the ligand-receptor complex and linear regres-
sion analysis to develop a model of the affinity of ligands for
the active site of a phospholipase was published by Ortiz et
al.39)

Theory

The processes governing molecular recognition and affinity
consist of transfer of the ligand from the solvent to the more
hydrophobic protein environment. The system undergoes
changes in energy and entropy as a result of losing solute/solvent
interactions, and the transfer of the ligand from solution to the
active site. In most cases, the ligand has to displace water
molecules which occupy the active site in its unliganded state.
At the binding site, the ligand is conformationally immobilized,
thereby decreasing its entropy and increasing its free energy.
Simultaneously, optimized interactions with the functionality
of the binding pocket increase the enthalpy of binding. The
process can involve substantial conformational changes of both
the ligand and the receptor. An absolute prerequisite for specific
binding, however, is steric complementarity. Irrespective of the
pattern of intermolecular forces surrounding the ligand, if a
bulky group is present that does not fit within the three-
dimensional active site available at the receptor, then effective
binding is precluded due to the magnitude of the repulsive van
der Waals interaction.
In summary, the success of a particular recognition event is

dependent upon three major interactions that involve changes
in both entropy and enthalpy. The first is the conformational
changes of the ligand and the receptor upon complexation. The
second is the structural and energetic complementary of the
ligand and the receptor in the complex. The third is the
thermodynamic aspects which describe the transfer of the ligand
from solution to the binding site, i.e., the desolvation of ligand
and receptor, and the loss of rotational and translational entropy
of the ligand. In order to successfully predict the affinities of
ligands for receptors, one must attempt to quantitate these events
and scale their relative contributions to the free energy of
binding.
Conformational Properties of the Ligand and Receptor.

Changes in conformational entropy occur when the freely
rotating side chains of the dissociated components are forced
to adopt more rigid conformations on complex formation.
Novotny et al.38 have attempted to take entropy changes into
consideration in free energy calculations of antibody-antigen
complexes. The minimal estimate of conformational freedom
lost assumes that each torsional degree of freedom has ap-
proximately three equivalent energetic states available, namely,

the trans and( gauche. To estimate the total change in side
chain conformational entropy (∆SCF), the atoms involved in the
contact area of the complex were used to estimate the number,
N, of side chain torsions fixed:

Williams et al.10 have estimated the entropy change due to
freezing a free rotor to be 5 kJ/mol. Similarly, an indication of
the conformational entropy lost upon binding40 can be calculated
by estimating the flexibility of the ligand. The flexibility index
developed by Fisanick et al.41 is a function of the shortest
topological paths between all pairs of atoms in a structure, and
takes into account the type of bonds and the extent of branching
in the paths. An alternative measure of this is to simply count
rotatable bonds.
In VALIDATE, the number of rotatable bonds in the ligand

is counted by summing all nonterminal single bonds (methyl
groups are assumed to be freely rotating). It has been suggested
that the number of degrees of freedom in a nonaromatic ring
system (aromatic rings are ignored) is on the order ofn - 6,42

wheren represents the number of bonds in the ring. For this
application, it was felt thatn - 4 is more appropriate. The
impetus for this is based upon the conformational analysis of
five-membered systems such as proline. To count such a ring
as having zero degrees of freedom did not seem appropriate
due to puckering of the ring. Therefore, the rotatable bond (rb)
count can be expressed as follows:

There is one exception to this method. In protein-protein
systems, a large portion of the protein inhibitor is not bound at
the active site and remains freely accessible to the solvent.
Rotatable bonds in these areas, therefore, cannot be considered
as being more “frozen” by complex formation. Hence, only
the rotatable bonds at the active site interface are counted. We
ignore the estimation of the energy associated with entropy loss
in an explicit sense and simply use the number of torsions which
are in the region of interaction as a parameter for the learning
paradigm.
Transfer of Ligand from Solution. From a physicochemical

viewpoint, the lipophilicity of a hydrophobic molecule is
estimated by the energy needed to create a cavity in the aqueous
solvent in which the solute can fit. Jackson and Sternberg43

have developed a scoring function for docking proteins which
uses molecular surface area changes in combination with
electrostatic free energy and side chain conformational entropy
changes to distinguish near-native from non-native dockings of
six protein complexes. With hydrophobic molecules, when the
molecule binds to the receptor, the energy of cavity creation is
released, entropically favoring the recognition process. logP
is used as a measure of molecular lipophilicity in water (with
reference to octanol). We use the fragment-basedH log P44

method in Hint 1.145,46 to compute the ligand’s partition
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no. of rb) (no. of nonterminal single bonds)+ ∑
i

(ni - 4)
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Prediction of Binding Affinities of NoVel Ligands J. Am. Chem. Soc., Vol. 118, No. 16, 19963961



coefficient. In essence, this value is used to gauge the ligand’s
preference for the active site of the receptor vs the aqueous
solvent. Obviously, if it is energetically more favorable to
remain in the solvent, few ligands will reach the active site.
With the partition coefficient, a negative value indicates a
preference for a polar (hydrophilic) environment and a positive
value indicates a preference for a nonpolar (lipophilic) environ-
ment. When developing this method, we felt it was not
sufficient to simply add the partition coefficient without using
the additional knowledge of the receptor. For example, the HIV
protease active site, though charged, is predominantly lipophilic
in terms of total surface area. Thus, ligands with a positive
partition coefficient are favored for the HIV protease binding
site. However, in the case of theL-arabinose sugar binding
protein, the active site is predominantly hydrophilic in total
surface area. The sugar ligands which bind to this protein are
hydrophilic (negative partition coefficients). In VALIDATE,
we compute the amount of hydrophilic and lipophilic surface
area as ratios to the total surface area of the receptor active
site. The final value of the partition coefficient is then modified
on the basis of this information in the following fashion:

where (H logP)(PC) the partition coefficient as computed by
Hint 1.1 and RC) 1 if the receptor active site is predominantly
lipophilic and-1 if the receptor active site is predominantly
hydrophilic.
The determination of the lipophilic/hydrophilic preference of

the receptor active site is slightly more involved than simply
comparing surface areas. The calculation of lipophilic and
hydrophilic surface areas in the active site is done using each
ligand that binds with the particular receptor as a seed. The
ligand is placed in the binding site and each receptor atom which
has a solvent accessible surface that is within a distanceR (where
R is the mean radius of the solvent; water with a mean radius
of 1.4 Å was used for the calculations in this paper) of the
solvent accessible surface area of any ligand atom is considered
part of the active site. The solvent accessible surface area of
this atom is added to the appropriate surface area type. The
definition of the surface area types should be made here. Any
carbon which is covalently bonded to no more than one non-
carbon is considered lipophilic. Any hydrogen connected to
such a carbon is also considered lipophilic. All other atoms
are considered hydrophilic. This is based upon the definition
used in the Bo¨hm scoring function.34

The determination of the sign of the coefficient RC is based
on the sums of the lipophilic and hydrophilic surface areas of
the active site. There are two considerations at this point. First,
an active site that has slightly more hydrophilic than lipophilic
surface area is still more lipophilic than a solvent like water.
Second, the surface area calculations are highly dependent upon
the size and shape of the ligands. The rest of the calculation
keeps these considerations in mind and is, therefore, slightly
biased to considering an active site as lipophilic. For the active
site of a receptor to be considered hydrophilic and the value of
RC to be set to-1, one of the following criteria must be true.
If less than five ligands are available for a given active site, all
calculations must yield that at least 55% of the total surface of
the active site is hydrophilic. If five or more ligands are
available, at least half of the calculations must yield that 55%
or more of their total surface area is hydrophilic. The remaining
calculations must yield that at least a majority of the total surface
area is hydrophilic. Although there is no obvious precedent

for these criteria, they are derived from observations on the
training set of 51 crystalline complexes processed. While a less
pragmatic rationale is desirable, most systems we have examined
thus far exhibit a substantially greater surface area of one type
than the other, and no question arises as to the preference of
the active site.
Protein ligands require a special treatment for this calculation

as they did for the rotatable bond count. Since only a small
portion of the protein ligand, the active site, is desolvated by
binding to the receptor, only theH log P for this region is
relevant. Therefore, this region is extracted from the protein
and the calculation is done only on this part of the molecule.
Steric and Energetic Complementarity. An absolute

prerequisite for specific binding is structural complementarity
of the ligand and receptor at the site of interaction. Even though
one could argue that hydrogen bonds and van der Waals (VDW)
contacts contribute little to protein complexation47 due to the
competitive interactions with water in the unliganded state, there
must be interaction between complementary desolvated surfaces,
such that polar atoms are properly positioned to make hydrogen
bonds. That is, electrostatic interactions contribute to the
specificity of the complex formation; incorrect associations are
forbidden by large unfavorable enthalpies due to poor packing
and loss of hydrogen bonds made to water.
The nonbonded electrostatic interaction energy is calculated

using the explicit sum of the Coulombic potentials:

The charges on the ligand and the receptor are those from the
implementation of the Amber force field within the Macro-
Model48 program. Additions to this Amber charge set in
MacroModel allow for appropriate charges for non-amino acid
structures. The nonbonded steric interaction energy is computed
from the explicit sum of the Lennard-Jones potentials:

where

rij ) the distance between atom centeri and atom centerj, Ri,
εi ) the VDW radius and epsilon value of atomi, andRj, εj )
the VDW radius and epsilon value of atomj. The parameters
required were derived from the Amber force field within the
MacroModel program.
Steric Fit. It has been demonstrated that individual amino

acid residues in proteins are closely packed49 with individual
amino acid residues occupying the same volume as they do in
crystals of the amino acids themselves.47,50 This has resulted
in the interfaces between residues in protein hydrophobic cores

(46) Kellogg, G. E.; Semus, S. F.; Abraham, D. J.J. Comput.-Aided
Mol. Des.1991, 5, 545-552.

(47) Chothia, C.; Janin, J.Nature1975, 256, 705-708.
(48) Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.;

Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C.J. Comput.
Chem.1990, 11, 440-467.

(49) Richards, F. M.J. Mol. Biol. 1974, 82, 1-14.
(50) Chothia, C. H.Nature1975, 254, 304-308.

PC) (RC)(H logP)(PC)

Φ )
1

4πε0
∑
i

L

∑
j

R qiqj

rij

EVDW ) ∑
i

L

∑
j

R

εij(1/R12 - 2/R6)

εij ) (εiεj)
1/2

R12 ) (rij/(Ri + Rj))
12

R6 ) (rij/(Ri + Rj))
6
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being described as more “solid”-like.51 Surface complementarity
is, therefore, an important component of recognition.52 Thus,
we have developed a function called “steric fit” which describes
the close packing interactions between the ligand and receptor.
The steric fit is computed by summing the number of “good
contacts” for each atom of the ligand which is contained in the
active site. Antibody-steroid complexes and chymotrypsin-
binding proteins actually contain a considerable percentage of
their atoms outside of the active site while HIV protease binding
inhibitors are largely surrounded by the receptor. VALIDATE
defines a good contact as an instance where the VDW surface
of a ligand atom is within a modifiable parameter,ε, of the
VDW surface of a receptor atom:

where

N) the number of ligand atoms contained in the active site,ri,
rj ) the VDW radii of atomsi and j, anddij ) the distance
from atom centeri to atom centerj.
We have examinedε values ranging from 0.1 to 0.3 Å. In

actuality, the range is not necessarily symmetric as the equation
would indicate. For obvious reasons, whenε > 0.1 Å, we do
not allow an overlap (-ε) of greater than 0.1 Å even though
the allowed gap (+ε) could be defined to be as large as 0.3 Å.
The results reported in this paper were computed usingε ) 0.3
Å. It is important to note the scaling of this value by the number
of ligand atoms within the active site region.
Surface Areas. Previously, electrostatic and hydrophobic

properties have been mapped onto contoured surface areas as
an aid to drug design53 as the two interacting surfaces must be
sterically and electrostatically complementary. In this regard,
VALIDATE computes four components to surface complemen-
tarity. These are lipophilic complementarity (nonpolar/nonpo-
lar), hydrophilic complementarity (polar/polar, opposite charge),
lipophilic/hydrophilic noncomplementarity (polar/nonpolar), and
hydrophilic noncomplementarity (polar/polar, like charge).
VALIDATE uses 256 evenly distributed data points, obtained
from the SASA program,54 which are placed on the VDW
surface of each receptor atom whose VDW surface is within 5
Å of the atom center of any ligand atom. If a point on this
surface is within a mean solvent radius (1.4 Å for water) of the
VDW surface of a ligand atom, it is considered a contact point.
Its type is based upon the determination of the polar/nonpolar
nature of both atoms and the criteria discussed above. At this
point, we split into two different types of calculations of surface
area. The first is an absolute surface area between the ligand
and receptor similar to the method used by Bo¨hm.34 For each
point on the receptor surface, a record of each type of contact
is kept. However, a particular type of contact, e.g., lipophilic
complementarity, is counted only once even if that point is
within the distance limit described above of more than one
ligand atom’s VDW surface. The points of each type are then
summed for each atom in the receptor. The total surface on
each atom for each type of contact is computed by dividing the
number of contact points of that type by 256 (the total number

of points possible) and then multiplying by the total surface
area of the atom. The functional form is

where CPi ) the number of contact points on atomi andri )
the VDW radius of atomi. The second method is somewhat
similar to the approach in Hint 1.145,46sa pairwise sum. If a
single point on the surface of a receptor atom is within the
described distance ofn atoms of the ligand of a given type,
then that point would record a sum ofn, rather than 1 as
previously described. In this paper, the results of both types
of calculations are included. While we expected one or the
other procedure to be preferred, using both sets of data in the
model improved not only the model itself but its predictive
abilities on all test sets by a significant amount (on the order of
0.1 unit). We assume this reflects surface complementarity in
some nonlinear manner related to exclusion of solvent.
When these fields were initially added to the model, there

was a good correlation among ligands associated with a given
receptor; however, there appeared to be a scaling problem
between receptor types. To address this problem, it was decided
to scale the values computed for surface areas on the basis of
the ratio of the total surface area of each receptor’s active site
to that of HIV protease. HIV protease was chosen as a
convenient normalization factor as there were more HIV
inhibitors in the training set than any other type. To do the
scaling, the largest total surface area computed for a given
receptor’s active site for any of its known ligands is used to
divide the largest total surface area computed for HIV protease.
The scaling factor is used to multiply each lipophilic and
hydrophilic contact surface area. An attempt to use the average
total surface area of the active site was explored; however, the
results were not as good as those using the largest area for
normalization. Due to the method of scaling, it should make
no difference in the overall results which receptor was used as
a reference since all numbers are relative.
Ligand Strain Energy. Ligand strain energy may be viewed

as the amount of energy required for the ligand to adopt the
receptor-bound conformation. We define the strain energy
pragmatically by

whereEbs ) the energy of the ligand’s receptor-bound confor-
mation andEsolv ) the energy of the ligand in solvent at its
nearest local minimum. This is calculated by comparison of
the conformational enthalpy of the receptor-bound conformation
of the ligand to the nearest local minimum of the unbound ligand
using the GB/SA55 solvation model with the Amber all-atom
force field implementation in MacroModel.
At this point, an overall summary of the model should be

given. The major properties computed are the electrostatic
energy, steric interaction energy, steric fit,H log P partition
coefficient, rotatable bond count, ligand strain energy, lipophilic
contact surface area, hydrophilic contact surface area, polar/
nonpolar contact surface area, and bad hydrophilic contact
surface area. A note should be made at this point about
hydrogen bonds which are not explicitly considered as they are
in the LUDI scoring function.34 Initially, a hydrogen bond factor
was computed using the method described by Bo¨hm.34 How-
ever, all attempts to incorporate this parameter into the current

(51) Bello, J.Int. J. Peptide Protein Res.1971, 12, 38-41.
(52) Lawrence, M.; Colman, P.J. Mol. Biol. 1993, 234, 946-950.
(53) Bohacek, R. S.; McMartin, C.J. Med. Chem.1992, 35, 1671-1684.
(54) Le Grand, S. M.; Merz, K. M., Jr.J. Comput. Chem.1993, 14,

349-352.
(55) Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T.J. Am.

Chem. Soc.1990, 112, 6127-6129.
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model reduced its accuracy. One should not conclude, however,
that hydrogen bonds are not important to receptor-ligand
complexation. Hydrogen bonds make a significant contribution
to the interaction energy; however, they must be adequately
represented by other parameters used in the model including
the electrostatic interaction energy and the complementary polar
surface area.

Computational Methods

The calculation of properties for validation is a three-step process.
First, the crystal structure of the complex is processed into a usable
form. Second, the complexes need to be minimized to alleviate steric
contacts which usually arise due to the random way in which hydrogens
are added to heavy atoms. Finally, the structures are processed through
the VALIDATE program to compute the requisite parameters. When
explained in detail, the process sounds quite involved and time
consuming. However, all steps, except for the initial extraction of
ligand from the complex, have been completely automated through
software. Extracting the receptor and ligand from the cocrystal is, in
fact, the most time-consuming effort in processing. Most of the
structures of complexes are from Brookhaven;56 however, some are
from other sources. The Brookhaven files are initially read into Sybyl57

where the ligand is extracted from the receptor-ligand complex.
Hydrogens are added to the receptor with the biopolymer dictionary

in Sybyl. Since most of the ligands are not peptides, the hydrogens
are added through valence-filling algorithms. Waters and any ions in
the crystal structures of the complex were left with the receptor. The
ligand and the receptor are then written out as separate files in Sybyl’s
mol2 format. Due to the way hydrogens have been added to the
receptor, ligand, and water molecules, it was necessary to minimize
the complexes before computing the VALIDATE fields. It was our
intent to simply relieve steric contacts created from this addition, not
to have large conformational changes occur during minimization. The
criteria used to set up the minimization helps to ensure that this was
the case. The minimizer used was the Batchmin minimizer distributed
with MacroModel.48 Several force field implementations are available
with this minimizer, and we used the Amber all-atom implementation.
This force field was selected because it was generally well parameter-
ized for most of our complexes. The setup criteria for the minimization
basically involved selecting a core of atoms around the active site for
minimization and a shell of atoms surrounding that to be used for long-
range electrostatics interactions during the minimization. Atoms in the
ligand and the selected core of the receptor underwent the full
minimization process. Atoms in the shell surrounding this were fixed
in place, but charges were placed on them by the minimizer to be used
for nonbonded electrostatic interactions with atoms in the core and
ligand. Atoms beyond this shell were ignored. In the software that
generates the files for minimization, the sizes of the core and the shell
are specified in angstroms. For all complexes in this paper, the values
of 8 and 10 Å were used for the core and the shell, respectively. The
first distance was used as a cutoff based on the atoms of the ligand
and is not a spherical radius. Any receptor atom within 8 Å of any
ligand atom was added to the core. Any atom within 10 Å of these
selected core atoms was added to the fixed shell. It should be noted
that waters and ions are included when selecting these atoms. An
illustration of the core and shell can be seen in Figure 1. The
minimizations were run with a gradient convergence of 0.1 and an
iteration limit of 5000 for all small molecule ligands (15 000 for the
protein inhibitors). A solvation model was not used; however, in many
cases numerous waters from the crystal structures were included in
the core and the shell. Minimizations were run on SGI R4000
Challenge Mmachines with the mips2 compiled version of the batchmin
program from MacroModel 4.5. Average run times were on the order
of 30-45 min (protein inhibitors took considerably longer).
Once a minimization was complete, the ligand and the receptor were

extracted into separate Sybyl mol2 format files. The VALIDATE
program was run with these two files as input. The electrostatic

interaction energy, steric interaction energy, steric fit, rotatable bond
count, and all lipophilic/hydrophilic surface area calculations are done
internally. VALIDATE calls the Hint program to compute theH log
P and extracts the result from the Hint output file. All calculations
for this paper have been done using Hint 1.1.58 A secondary program
calls batchmin to minimize the extracted ligand using the Amber all-
atom force field implementation with the GB/SA solvation model. The
starting energy and final energy are extracted from the batchmin output
file, and the ligand strain energy is calculated. The run times for
calculation of the properties computed internally in VALIDATE are
generally on the order of 10-30 s. TheH log P calculation averages
about 10 s for a typical ligand. The ligand strain energy calculation
varies from 1 to 10 min with an average of 5 min per ligand (protein
ligands took considerably longer).
The fields which are computed by VALIDATE were placed into a

molecular spreadsheet in Sybyl. The first column of the spreadsheet
contained the binding affinity which is used as the dependent column
of a PLS analysis59,60as implemented in Sybyl. The analysis produced
a coefficient for each data field that was used for the prediction of
new compounds. For a basis of comparison, the analysis was also
performed using the SONNIC neural network program61with the same
parameters as input. The results of both methods are presented in this
paper.

Results

The training set consisted of the parameters calculated for
51 receptor-ligand cocrystalline complexes. The training set
included complexes of HIV protease, thermolysin, endothia-
pepsin,â-trypsin, and subtilisn-Novo inhibitors, antibody (DB3)-
bound steroids, andL-arabinose binding protein-bound sugars
as listed in Table 1. Complexes were chosen to produce a set
which was diverse in the areas of interaction size, type, activity,
and physicochemical features. Most of the complexes were
selected from a list compiled by Keske and Dixon62 which
contains cocrystal complexes, available in the Brookhaven
database, along with their published binding affinities. Beyond
attempting to achieve physicochemical diversity, the only criteria
for elimination were systems which were too large to be
computationally convenient and those which required additional
parameterization for the force field. The diversity of the set is
illustrated in the different types of receptors included. HIV
protease and endothiapepsin complexes represent small molec-
ular inhibitors bound to aspartyl proteases, thermolysin com-
plexes are a metalloprotease with bound small molecular
inhibitors,â-trypsin and subtilisin-Novo complexes have protein
inhibitors bound in the complexes used, DB3 is a steroid-binding
antibody, andL-arabinose binding protein complexes have a

(56) Abola, E. E.; Bernstein, F. C.; Koetzle, T. F. InThe Role of Data
in Scientific Progress; Glaeser, P. S., Ed.; Elsevier: New York, 1985.

(57) SYBYL, Tripos Associates, Inc., 1699 S. Hanley Rd., St. Louis,
MO 63144.

(58) HINT, eduSoft, LC, P.O. Box 1811, Ashland, VA 23005.
(59) Wold, S.; Albano, C.; Dunn, W. J., III; Esbensen, K.; Hellberg, S.;

Johansson, E.; Lindberg, W.; Sjostrom, M.Analysis1984, 12, 477-85.
(60) Wold, S.; Johansson, E.; Cocchi, M. In3D QSAR in Drug Design;

H. Kubinyi, H., Ed.; ESCOM Science Publishers: Leiden, The Netherlands,
1993; pp 523-550.

(61) Broughton, H.; Green, S.; Rzepa, H.J. Chem. Soc., Perkin Trans.
2 1995, 431-435.

(62) Dixon, J. S.; Keske, J.New Methods Drug Res.in press.

Figure 1. Illustration of receptor atom selection for minimization based
on using the ligand as a seed.
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predominantly hydrophilic active site with bound sugars. The
ligands in this set ranged from 24 atoms (Leu-NHOH) to 1512
atoms (SSI M70G M73K), and the activity range extended from
-log Ki ) 2.47 to-log Ki ) 14.0.

The statistical (PLS) and neural network (SONNIC) analyses
produced similar results with respect to the correlation values.
The PLS analysis yieldedr2 ) 0.849 withs) 1.006 log units.
A leave-one-out cross-validation of the set producedq2 ) 0.776
with s(press)) 1.139 with six components. Six components
had been chosen on the basis of previous experience with these
parameters as being the most robust. For this particular training
set,s(press) was equivalent for the four-component model. The
SONNIC analysis trained tor2 ) 0.81. Cross-validation yielded
q2 ) 0.765 at this level of training and a rms error of 1.08. The
full results of the PLS and SONNIC analysis are listed in Table
2a. The graphs of actual vs predicted binding affinity in-log
Ki for the fitted and cross-validated PLS analyses are shown in
Figures 2 and 3. The field coefficients and their contribution
percentage to the overall model are listed in Table 2b. Ther2,
q2, sands(press) are those given in the PLS analysis done within
Sybyl and defined as follows:

whereN is the number of molecules andc is the number of

PLS components (in the case of multiple regression analyses,c
) the number of variables).
The true measure of any model rests in its ability to predict

new compounds. For a generic model useful for de novo design,
the model should obviously predict unique ligands for the
receptors that exist in the training set, but more importantly,
unique ligand-receptor complexes. Three separate test sets
were compiled to test the derived model’s predictability. The
first test set consisted of 14 inhibitors which were obtained from
crystalline receptor-ligand complexes. Neither the ligands nor
the specific receptors in this test set were included in the training
set. Included were two DHFR, two penicillipepsin, three
carboxypeptidase, twoR-thrombin, two trypsinogen, and three
DNA complexes. Prediction of the binding affinities for this
test set of novel complexes (mean binding affinity 6.90 versus
7.495 for the training set) was very good with a predictiver2 )
0.806, an absolute average error of 0.697 (approximately 0.95
kcal/mol at 25 °C), and an rms error of 0.899 log unit
(approximately 1.2 kcal/mol at 25°C). On this test set,

Table 1. Receptor-Ligand Complex List for the Base Modela

protein-inhibitor Brookhaven
affinity
(-logKi) protein-inhibitor Brookhaven

affinity
(-logKi)

HIV-AG1001 N/A 4.62* endothiapepsin-PD 125754 1eed 4.90
HIV-AG1002 N/A 4.91* endothiapepsin-L-364,099 2er0 6.40
HIV-AG1004 N/A 5.28* endothiapepsin-H 256 2er6 7.20
HIV-RochIV N/A 7.52* endothiapepsin-H 261 2er7 9.00
HIV-MVT101 4hvp 6.12 endothiapepsin-L-363,564 2er9 7.40
HIV-SC52964 N/A 6.65* endothiapepsin-CP 71,362 3er3 7.10
HIV-JG365 7hvp 9.60 endothiapepsin-PD 125967 4er1 6.60
HIV-acetylpepstatin 5hvp 5.60 endothiapepsin-H 142 4er4 6.80
HIV-GR116624X N/A 7.05* endothiapepsin-CP 69,799 5er2 6.60
HIV-U75975 N/A 8.65* L-arabinose bind prot-L-arabinose 1abe 6.50
HIV-L-689,502 N/A 8.95* L-arabinose bind prot-D-fucose 1abf 5.20
HIV-A74704 9hvp 8.50 L-arabinose bind prot P254G-D-fucose 1abp 5.80
HIV-A77003 N/A 9.70 L-arabinose bind prot P254G-L-arabinose 1bap 6.90
HIV-hydroxyethylene 1aaq 5.50 L-arabinose bind prot P254G-D-galactose 9abp 8.00
HIV-L-700,417 4phv 9.15 L-arabinose bind prot M108L-L-arabinose 9abp 7.00
thermolysin-phosphoramidon 1tlp 7.55 L-arabinose bind prot M108L-D-fucose 7abp 5.40
thermolysin-N-(1-carboxy-3-phenyl)-L-LeuTrp 1tmn 7.47 L-arabinose bind prot M108L-D-galactose 8abp 6.60
thermolysin-N-phosphoryl-L-leucinamide 2tmn 4.10 â-trypsin-BPTI 1tpa 14.00
thermolysin-ValTryp 3tmn 5.90 â-trypsin-PTI 2ptc 13.30
thermolysin-Leu-NHOH 4tln 3.72 DB3-11a-hemisuccinate N/A 9.44
thermolysin-ZFPLA 4tmn 10.19 DB3-5a,3b-hemissuccinate progesterone N/A 8.70
thermolysin-ZGp(NH)LL 5tmn 8.04 DB3-AEtiocholanolonE N/A 7.62
thermolysin-ZGp(O)LL 6tmn 5.05 DB3-progesterone N/A 9.00
thermolysin-CH2CO-Leu-OCH3 7tln 2.47 subtilisin-Novo-Eglin c L45R 1sbn 10.30
endothiapepsin-PD 125754 1eed 4.90 subtilisin-Novo-CI-2 2sni 11.00
endothiapepsin-L-364,099 2er0 6.40 subtilisin-Novo-SSI M73K 3sic 10.20
endothiapepsin-H 256 2er6 7.20 subtilisin-Novo-SSI M70G M73K 5sic 10.20

a An asterisk indicates the activity is derived from IC50 values by use of the Cheng and Prusoff equation.

q2 )

1- (∑N (predi - actuali)
2

∑
N

(actuali - Xh)2 ) s) [∑N (calci - actuali)

(N- c- 1) ]1/2
s(press)) [∑N (predi - actuali)

(N- c- 1)
]1/2

Figure 2. Fitted PLS analysis of 51 complexes in the training set.r2

) 0.85 and the standard error (s) ) 1.01.
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SONNIC scored a maximal predictiver2 ) 0.85 and an absolute
average error of 0.96 log unit for training to a value ofr2 )
0.84 for the training set (Figure 7). The full results of the
analysis can be seen in Table 3 and Figure 4. The predictive
r2 for this and all other test sets was computed analogous to
the definition ofr2 by Cramer et al.23 to discern the improvement
of the prediction over the obvious prediction of the mean of
the training set for each member of the test set which would

give a predictiver2 ) 0 by the following formula:

where

andXh ) the mean value of the binding affinity of the training
set. The absolute average error is computed as

Table 2

(a) PLS Analysis Results for the Base Set (Mean Binding Affinity 7.60)
Fitted Analysis

PLS
standard error of estimate 1.01
r2 0.85
F values (n1) 12,n2) 38) 17.81
prob ofr2 ) 0 (n1) 12,n2) 38) 0.000

SONNIC
trainedr2 0.81

Cross-Validation
PLS

Standard Error of Predictions (Cross-Validated)a

comp 1 comp 2 comp 3 comp 4 comp 5 comp 6

-logKi 1.722 1.315 1.194 1.133 1.138 1.139

comp 7 comp 8 comp 9 comp 10 comp 11 comp 12

-logKi 1.204 1.231 1.246 1.291 1.317 1.336

q2 0.78
rms error 1.14

SONNIC
q2 0.77
absolute average error 0.89
rms error 1.08

(b) Coefficients and Contributions of Fields to the Base Model from PLS

fieldb norm coeff fraction

(1) electrostatic interaction energy 0.110 0.027
(2) steric interaction energy 0.440 0.107
(3) steric fit 0.034 0.008
(4)H logP 0.339 0.082
(5) rotatable bonds 0.497 0.121
(6) induction enthalpy 0.479 0.117
(7) M1 lipophilic contact surface area 0.395 0.096
(8) M1 hydrophilic contact surface area (UnComp) 0.393 0.096
(9) M2 lipophilic contact surface area 0.759 0.185
(10) M2 hydrophilic contact surface area 0.334 0.081
(11) M2 lipophilic/hydrophilic contact surface area 0.223 0.054
(12) M2 hydrophilic contact surface area (UnComp) 0.106 0.026

a The optimum number of components is six.bM1 ) method 1 and
M2 ) method 2 as described in the Theory section.

Figure 3. Cross-validated PLS analysis of 51 complexes in the training
set. q2 ) 0.78 and the standard error (s(press))) 1.14 with six
components.

Table 3

(a) Listing of Compounds and Binding Affinities of Test Set 1a

protein-inhibitor

actual
affinity
(-logKi)

predicted
affinity
(-logKi)

DHFR-folate 7.4 7.29
DHFR-methetrexate 8.3 6.40
penicillipepsin-IvaVVLySta-OEt 9.4 7.71
penicillipepsin-Iva VVSta-OEt 7.7 8.04
carboxypeptidase-L-benzylsuccinate 6.3 5.92
carboxypeptidase-GlyTyr 4.0 5.14
carboxypeptidase-ZAGp(0)F 9.1 9.39
R-thrombin-MD 805 7.4 7.00
R-thrombin-NAPAP 8.2 8.54
trypsinogen-IleVal 4.3 4.35
trypsinogen-ValVal 2.9 3.39
DNA-daunomycin 6.5 6.10
DNA-netropsin 8.8 9.59
DNA-4,6-diamidino-2-phenylindole 6.3 5.04

(b) Results of Predictions of Test Set 1 (Mean Binding Affinity 6.900)

PLS
predictiver2 0.81
absolute average error 0.70
rms error 0.90

SONNIC
predictiver2 0.69
absolute average error 0.96
rms error 1.13

a Predictions are from PLS analysis.

Figure 4. Prediction of affinities of 14 crystalline complexes using
coefficients from fitted PLS analysis of the training set. The predictive
r2 ) 0.81 and the absolute average error is 0.70.

predictiver2 ) (SD- s(press))/SD

SD) ∑
N

(actuali - Xh)2

s(press)) ∑
N

(actuali - predi)
2

absolute average error)

∑
N

|predi - actuali|

N

3966 J. Am. Chem. Soc., Vol. 118, No. 16, 1996 Head et al.



and the rms or root-mean-square error is computed as

The second test set consisted of 13 HIV protease inhibitors
whose initial conformation and alignment were derived from
the CoMFA analysis done by Waller et al.30 The selection of
the inhibitors was based upon maintaining a good range of
activity (mean binding affinity 6.983 versus 7.495 for the
training set) as well as utilizing several inhibitors from the
published test set. A complete list is given in Table 4. All 13
inhibitors were minimized with the structure of HIV-1 protease
extracted from the Brookhaven entry 9hvp. The PLS predictive
r2 was 0.568 with an absolute average error of 0.726 log unit
and an rms error of 0.866 log unit (approximately 1.17 kcal/
mol at 25°C). The results of this analysis are shown in Figure
5. The SONNIC analysis yielded similar results with a maximal
predictiver2 ) 0.529 and an absolute average error of 0.718
log unit at a trainingr2 ) 0.83 (Figure 7). The predictiver2 is
considerably lower than that of the first test set; however, this
is due to the smaller range and values similar to the mean
activity of the training set. The absolute average error is almost
identical to that of the first test set.
The third and final test set was composed of the 11

thermolysin inhibitors used as a test set in the CoMFA analysis
done by DePreist et al.24 and Waller and Marshall.29 The
alignment of the inhibitors with respect to one another, as well
as the initial conformation, is identical to that used by Waller
and Marshall.29 At this point, it should be noted that the Waller
and Marshall alignment was a field-fit alignment. The set as a
whole was then aligned to ZFPLA from the cocrystal complex.
Several of the inhibitors in the test set contained a phosphorus
group similar to ZFPLA, and this was used as the reference
point for alignment. The structures were then minimized with
the enzyme structure from the ZFPLA cocrystal. The PLS
analysis yielded a predictiver2 ) 0.715 with an absolute average

error of 1.48 log units. The high predictiver2 reflects the large
difference between the mean (7.495) of the training set and the
mean (4.645) of test set 3. In other words, while the average
errors for the thermolysin complexes were considerably larger
than for the two other test sets, the model correctly predicted
the overall lower affinity of these complexes compared with
the average affinity of the training set. SONNIC performed
approximately the same with a maximal predictiver2 ) 0.70
and an absolute average error of 1.50 log units at a trainingr2

) 0.87 (Figure 7). The full analysis is listed in Table 5a. As
can be seen in Figure 6, six of the inhibitors were predicted
fairly well while the remaining five were not. The initial
alignments discussed above produced several bad steric contacts,
and starting energies were on the order of 107 kJ/mol. The
results from this set will be discussed further in the next section.

Discussion

We have presented a new method for the prediction of binding
affinity based on a hybrid model combining energetic consid-
erations from molecular mechanics and calculated molecular
properties related to desolvation and entropy loss on binding.
A model for binding affinity was derived using 51 crystal
structure complexes. A PLS analysis of this set provided
coefficients which correlate the physicochemical properties with
binding affinity. This mathematical model allows the prediction
of the activities of new ligands at a given receptor, or novel
ligand-receptor complexes, once the relevant parameters have
been calculated. The results of the cross-validation of the
training set as well as the predictions of the test sets are very
encouraging. Even with the relatively poor performance on 5
of the 11 thermolysin inhibitors in test set 3, the absolute average
error was only 1.45 log units. The performance on the first
two test sets was very good with absolute average errors well
under 1 log unit. While these results indicate that this technique
is well suited to determine which drug design candidates are
the best candidates for synthesis, it does not mean that further
improvement is not possible through more judicious parameter
selection and binding mode determination.
The similarity between the results of the PLS and neural

network analyses is a partial indication that the model is
consistent. However, the fields that were used in each analysis
are slightly different. In order to achieve optimal results with
PLS, the hydrophilic complementary contact surface area and
the lipophilic/hydrophilic contact surface area columns using
the first method of calculation were dropped in the PLS analyses

Table 4

(a) Listing of HIV Protease Inhibitors and Binding Affinities in Test Set 2a

HIV inhibitor

actual
affinity
(-logKi)

predicted
affinity
(-logKi)

Z·Phe[CH(OH)CH2N]Pro 4.84 6.55
QC·Asn·Peh[CH(OH)CH2N]DIQ·NHtBu 9.05 8.24
Z·Phe[C(O)C(O)N]Pro·NHtBu 5.87 6.42
Z·Asn·Phe[CH(OH)C(O)N]Pro·NHtBu 5.16 6.06
NoA·His·Leu[CH(OH)CH(OH)]Val·Ile·Amp 7.60 7.23
m3 5.67 6.18
m4a 6.55 6.71
m7 6.23 6.22
m8a 7.10 6.47
m10a 7.19 6.98
m10b 7.95 8.14
m11b 8.17 7.64
m12 4.84 6.95

(b) Results of Predictions of Test Set 2 (Mean Binding Affinity 7.34)

PLS
predictiver2 0.57
absolute average error 0.73
rms error 0.87

SONNIC
predictiver2 0.53
absolute average error 0.72
rms error 0.90

a Predicted values are from the PLS analysis.Ki values are derived
from published IC50 values through use of the Cheng and Prusoff
equation.

Figure 5. Predictions of affinities for 13 HIV protease inhibitors fit
to the active site using coefficients from fitted PLS analysis of the
training set. The predictiver2 ) 0.57 and the absolute average error is
0.73.

rms error) [∑(pred- actual)2

N ]1/2
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presented, leaving six parameters for surface interaction. These
two columns apparently contain no new information for the
model; however, the PLS implementation in Sybyl attempts to
fit them anyway. It was not necessary to remove these two
columns for the neural network analysis. SONNIC is capable
of determining when a column is not contributing to the model
and effectively ignores them; therefore, all columns were used
as input. This is the one major advantage of using SONNIC
over PLS. One difficulty in the use of neural networks is
overtraining. In order to control for this problem, the cross-
validated predictiver2 of the training set is calculated and used
to determine the maximalr2 from training. In other words, the
neural network model is trained while monitoring the predictive
r2, and training is terminated after the maximal predictiver2 is
found. Figure 7 indicates that the model is optimally trained
at the trainedr2 ) 0.81. The predictability of the model for
the three test sets continues to rise with further training, reaches
a maximum for the HIV protease inhibitor test set, for example,
at trainedr2 ) 0.83, and then degrades with further training.
The predictive ability for the other two data sets actually
increases to a maximum when the trainedr2 ) 0.85 (diverse
set) or 0.87 (thermolysin). The practical question, of course,
is when to stop training. We would suggest that model
derivation use the cross-validatedr2 of the training set to monitor
overtraining. Our experience suggests that this maximum occurs
in a range centered around a trainedr2 ) 0.85 for the types of

data sets we have examined. The discrepancy seen above in
predictive results due to variations in the completeness of
training suggests that the PLS approach is more robust, at least,
at this stage of development of the two alternative approaches.
One of the major surprises of the model was the calculated

role of the electrostatic interaction energy. The contribution
of electrostatics to the model was only 2.9%. It is difficult to
believe that the electronics of interaction contribute less than
3% to the binding process. In fact, this was anticipated to be
one of the most significant physical properties of binding. Since
most of the structures are derived from crystal structures, we
can only assume either that our representation of charges is
inadequate or that much of the relevant information from
electrostatic interactions is found in other parameters such as
complementary polar surface area. Some of the complexes
contain bound zinc ions, and the force field parameterization
we used is deficient for this metal, resulting in considerable
deviation from the crystal structures on minimization. This and
the distortion introduced on mimization of complexes with
significant steric overlap may account for the larger error of
prediction seen with the thermolysin test series. As was
discussed earlier, an attempt to incorporate explicit hydrogen
bond information did not improve predictability. This is not
surprising when one considers the very limited correlation of

Table 5

(a) Listing of Thermolysin Inhibitors and Binding Affinities in Test Set 3a

thermolysin
inhibitor

actual
affinity (-logKi)

predicted
affinity (-logKi)

thermolysin
inhibitor

actual
affinity (-logKi)

predicted
affinity (-logKi)

PPPhe 7.20 7.23 ZGPOLF 4.30 7.17
PLFOH 3.50 4.06 ZGPOLG 3.64 6.04
ZFGNH2 6.57 6.36 ZGPOLNH2 3.18 5.18
ZGPLF 7.72 5.23 ZLGNH2 2.51 3.21
ZGPLG 2.70 5.69 ZYGNH2 3.66 2.75
ZGPLNH2 6.12 5.30

(b) Results of Predictions of Test Set 3 (Mean Binding Affinity 4.65)

PLS
predictiver2 0.72
absolute average error 1.48
rms error 1.85

SONNIC
predictiver2 0.70
absolute average error 1.50
rms error 1.87

a Predicted values are from the PLS analysis.

Figure 6. Prediction of affinities for 11 thermolysin inhibitors using
coefficients from fitted PLS analysis of the training set. The predictive
r2 ) 0.72 and the absolute average error is 1.48.

Figure 7. Predictiver2 for the training set (leave-one-out) and three
test sets (14 diverse complexes, 13 HIV protease inhibitors, and 11
thermolysin complexes) as a function of training using the cross-
validated fit between the model and training set (trainedr2) as the
objective function.
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the electrostatic interaction energy. Atom-centered point charges
and hydrogen-bonding information simply may be too crude a
representation to give a reliable estimate for this field. In an
attempt to test this possibility, we are investigating the use of
ab initio-derived multipoles on both the receptors and ligands.
Steric fit is another field which did not make a significant

contribution to the current PLS model. This field has had an
odd history. In the initial stages of development, the steric fit
parameter maintained a significant contribution. As the size
and sophistication of the training set grew, however, the
contribution of this field fluctuated up and down significantly.
Although the removal of this field is under consideration, we
would like to see the contribution consistently remain low as
the size of the training set increases before doing so. It is
possible that the information contained in this field is redundant
since we already compute steric interaction energy. Currently,
there are 51 complexes in the training set. When the complexes
in the first test set are added, this number will increase to 65.
Our intent is to continue to add complexes of known structure
and affinity until the coefficients and contributions of the various
parameters converge.
The relatively good predictions of the three DNA-binding

molecules in the test set were unexpected considering the
apparently small contribution of electrostatics to the model and
the fact that these are highly charged systems and no nucleic
acid complexes were represented in the training set. No
significant conclusions can be drawn from only three observa-
tions, and it will be necessary to test several more DNA-binding
molecules to verify these results. The excellent performance
on the HIV test set was not surprising when one considers that
15 of the complexes in the training set are HIV complexes.
The problems with the five poorly predicted thermolysin

inhibitors are likely 2-fold. First, the charge representation issue
becomes magnified due to the presence of the bound zinc in
the active site of the receptor and the phosphorus-based groups
in several of the ligands. The second, and most likely the

largest, factor is the alignment and resultant enormous starting
energies for the minimization. Significant steric overlaps existed
in most of the complexes produced from this alignment which
was based on field fit. The starting energies did raise a red
flag; however, we felt it would be a good test of the overall
process to determine how sensitive the method was to the
starting geometry of the complex. To combat this problem,
we are currently investigating methods for the flexible docking
of ligands to the receptor. The HIV test set illustrates that good
predictions can be made for systems in which the crystal
structure of the receptor-ligand complex is not known.
However, predictions from systems in which the optimal
ligand-receptor interaction is not clear are highly suspect.
The results of the new method VALIDATE are encouraging

as the optimal set of relevant parameters have yet to be
determined. Perhaps more encouraging is the fact that we may
be able to significantly improve the model with an improved
representation of electrostatics and metal parameterization. Even
with current limitations, VALIDATE provides a reasonable
method for the estimate of the affinity of ligands with a known
receptor. This is true whether the receptor has a contingent of
ligands with known binding affinities or not. Reliable predic-
tions of affinity are crucial to the success of rational drug design,
protein engineering, and understanding of protein-protein
interaction; we believe that VALIDATE is a positive step in
that direction.
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